您當前所在的位置:首頁 > 環保分類 > 風機  

工業廢水如何去除氨氮和總氮

來源:環保設備     添加時間:2021-11-28 07:20:25

廢水氨氮超標和總氮超標區別
廢水氨氮超標使用氨氮去除劑就可以。正對廢水中氨氮超標,可以使用氨氮去除劑和氨氮去除菌種。
總氮超標,要使用去除總氮的生物菌種,投加在生化池,經過馴化來消除總氮超標。

做豆腐的廢水怎么處理

乳制品加工工業廢水中的部分脂類物質可以比較容易地用物理方法去除,而物理方法不能去除的雜質可采用生物處理的預處理方法。水解-好氧工藝可以有效的經濟地處理該廢水,實現達標排放。隨著工業對水資源應用越來越重視,工業廢水回用技術越來越受到重視。采用RO系統對已處理達標的乳品工業廢水進行過濾處理,將其處理后的水應用到其它對水質要求相對較低的地方,使水資源得到充分利用,同時為企業節省了成本的投入。
乳品工業廢水處理技術的應用不僅有效解決了乳品廢水處理難題,同時將其廢水進行回收再利用,實現了環境與工業和諧發展。

怎么才能有效驅除廢水中氨氮和總氮??

氨氮廢水的來源
鋼鐵、煉油、化肥、無機化工、鐵合金、玻璃制造、肉類加工和飼料生產等工業,均排放高濃度的氨氮廢水。 其中,某些工業自身會產生氨氮污染物,如鋼鐵工業及肉類加工業等。 而另一些工業將氨用作化學原料,如用氨等配成消光液以制造磨砂玻璃。此外,皮革、孵化、動物排泄物等新鮮廢水中氨氮初始含量并不高,但由于廢水中有機氮的脫氨基反應,在廢水積存過程中氨氮濃度會迅速增加。
過量氨氮排入水體將導致水體富營養化,降低水體觀賞價值,并且被氧化生成的硝酸鹽和亞硝酸鹽還會影響水生生物甚至人類的健康。因此,廢水脫氮處理受到人們的廣泛關注。目前,主要的脫氮方法有生物硝化反硝化、折點加氯、氣提吹脫和離子交換法等。消化污泥脫水液、垃圾滲濾液、催化劑生產廠廢水、肉類加工廢水和合成氨化工廢水等含有極高濃度的氨氮,a686964616fe78988e69d以上方法會由于游離氨氮的生物抑制作用或者成本等原因而使其應用受到限制。高濃度氨氮廢水的處理方法可以分為物化法、生化聯合法和新型生物脫氮法。
不同種類的工業廢水中氨氮濃度干變萬化,即使同類工業不同工廠的廢水中其濃度也各不相同。以某化工廠香蘭素生產廢水為例,其氨氮濃度高達6~7×104mg/L。為了徹底治理污染,除對生產工藝進行必要的改造外,必須尋找合適的氨氮廢水處理技術,降低廢水處理的成本。
氨氮廢水處理技術研究與應用現狀
目前,氨氮廢水的處理技術可以分為兩大類:一類是物化處理技術,包括吹脫(或汽提)、沉淀、膜吸收、濕式氧化等,其中吹脫和膜吸收技術都需要氨氮盡可能以氨分子形態存在;另一類技術是生物脫氮技術。
物化處理技術
依據NH3的質量分數與pH的關系,如果氨氮的去除形態為氨氣,為達到較高的去除率,就必須調節溶液的pH在11以上。這類技術包括吹脫、汽提、膜吸收等。在處理氨氮廢水的過程中,需要消耗大量堿,但可以回收部分氨。
吹脫(汽提)法吹脫法是將廢水pH值調節至堿性,然后在填料塔中通入空氣或蒸汽,通過氣液接觸將廢水中的游離氨吹脫至大氣或蒸汽中。 采用蒸汽可以提高廢水溫度,從而提高一定pH值時被吹脫氨的比例。一般情況下,如果采用吹脫法去除98%以上的氨氮,需pH調節。例如采用汽提技術對對硝基苯胺廢水進行了處理,在pH 大于11的條件下,廢水中的氨氮由3150 mg/L下降為187 mg/L,去除率為93%。
低濃度廢水通常在常溫下用空氣吹脫,而煉鋼、石油化工、化肥、有機化工、有色金屬冶煉等行業的高濃度廢水則常用蒸汽進行吹脫。但是這種方法一般要采用NaOH調節廢水的pH值,藥劑和能源消耗比較大。 為了降低藥劑成本,采用Ca(OH)2調節pH,結果表明,吹脫速率和吹脫效率要遠小于NaOH,而且在汽提過程中容易結垢,使得操作運行困難。
這種技術的另一個關鍵在于保證填料塔內的氣液充分接觸,有效防止溝流、液泛等非正常操作。 因此,填料的選擇和填充至關重要。除較高的能耗與堿耗外,利用吹脫技術處理氨氮的不足還在于使氨氮由液相轉移至氣相,如果沒有相應的回收技術,很容易導致大氣的二次污染。此技術主要用于高濃度氨氮廢水的預處理。
膜吸收技術
膜吸收過程是將膜分離和吸收相結合而出現的一種新型膜過程,它使用微孔膜將氣、液兩相分隔開來,利用膜孔提供氣、液兩相間傳質的場所。 膜吸收法處理含氨廢水的原理為:疏水性微孔膜(聚丙烯、聚四氟乙烯、偏聚氟乙烯)把含氨廢水和H2SO4吸收液分隔于膜兩側,通過調節廢水的pH值,使廢水中離子態的NH3轉變為分子態的揮發性NH3。 在膜兩側NH3的濃度差的推動下,廢水中的NH3在廢水一微孔膜界面汽化揮發。氣態的NH3沿膜微孔向膜的另一側擴散,在吸收液一微孑L膜界面上為H2SO4吸收,并反應生成不揮發的(NH3)2SO4而被回收。由于氨在廢水和吸收液中存在形式的不同,使得廢水中的氨能通過存在形式的轉換不斷向吸收液傳遞,直到吸收液中的H2SO4全部為氨中和為止,處理后廢水中的氨氮濃度理論上可達到零。與吹脫(汽提)技術和生化法等其他高氨氮廢水處理方法比較,膜吸收法的最大特點是,可以在常溫、常壓的條件下濃縮并回收廢水中的氨,無二次污染產生,實現含氨廢水的資源化。
現在,膜吸收工藝的難點在于防止膜的滲漏。為了保證較高的通量,一般的微孔膜的膜厚都比較薄,膜兩側的水相在壓差的作用下很容易發生滲漏。只有非常精確地調整膜兩側的壓力和流速,才能基本保證膜兩側的液量不發生變化。 即使在這樣的條件下,在進行氨吸收過程中,氨溶液一側的pH值還是有顯著的降低,經檢測,溶液中有大量硫酸根離子存在,最終導致氨溶液中的去除率僅在6O%左右。
因此,如何在保證氨氮傳質通量的情況下有效防止膜的滲漏是膜吸收工藝研究的重要內容。
沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。沸石一般被用于處理低濃度含氨廢水或含微量重金屬的廢水。然而,蔣建國等[4]探討了沸石吸附法去除垃圾滲濾液中氨氮的效果及可行性。小試研究結果表明,每克沸石具有吸附15.5 mg氨氮的極限潛力,當沸石粒徑為30~16目時,氨氮去除率達到了78.5%,且在吸附時間、投加量及沸石粒徑相同的情況下,進水氨氮濃度越大,吸附速率越大,沸石作為吸附劑去除滲濾液中的氨氮是可行的。
實驗表明用沸石離子交換法處理經厭氧消化過的豬肥廢水時發現Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加離子交換床的高度可以提高氨氮去除率,綜合考慮經濟原因和水力條件,床高18cm(H/D=4),相對流量小于7.8BV/h是比較適合的尺寸。離子交換法受懸浮物濃度的影響較大。
應用沸石脫氨法必須考慮沸石的再生問題,主要有再生液法和焚燒法。采用焚燒法時,產生的氨氣必須進行處理。通常采用再生液進行再生,再生液濃液再進行脫氨處理。
膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。蔣展鵬等[6]采用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機廢水可取得良好的效果。電滲析法處理氨氮廢水2000~3000 mg/L,去除率可在85%以上,同時可獲得8.9%的濃氨水。此法工藝流程簡單、不消耗藥劑、運行過程中消耗的電量與廢水中氨氮濃度成正比。PP中空纖維膜法脫氨效率>90%,回收的硫酸銨濃度在25%左右。運行中需加堿,加堿量與廢水中氨氮濃度成正比。
乳化液膜是種以乳液形式存在的液膜具有選擇透過性,可用于液-液分離。分離過程通常是以乳化液膜(例如煤油膜)為分離介質,在油膜兩側通過NH3的濃度差和擴散傳遞為推動力,使NH3進入膜內,從而達到分離的目的。用液膜法處理某濕法冶金廠總排放口廢水(1000~1200 mgNH4+-N/L,pH為6~9),當采用烷醇酰胺聚氧乙烯醚為表面活性劑用量為4%~6%,廢水pH調至10~11,乳水比在1:8~1:12,油內比在0.8~1.5。硫酸質量分數為10%,廢水中氨氮去除率一次處理可達到97%以上。
膜分離法應用的主要問題是投資成本及運行成本較高,操作復雜,難以控制。
MAP沉淀法
主要是利用以下化學反應:
Mg2 ++NH4++PO43-=MgNH4PO4
理論上講以一定比例向含有高濃度氨氮的廢水中投加磷鹽和鎂鹽,當[Mg2 + ][NH4+][PO43 -]>2.5×1013時可生成磷酸銨鎂(MAP),除去廢水中的氨氮。穆大綱等[8]采用向氨氮濃度較高的工業廢水中投加MgCl26H2O和Na2HP0412H20生成磷酸銨鎂沉淀的方法,以去除其中的高濃度氨氮。結果表明,在pH為8.9l,Mg2+,NH4,P043-的摩爾比為1.25:1:1,反應溫度為25 ℃,反應時間為20 min,沉淀時間為20 min的條件下,氨氨質量濃度可由9500 mg/L降低到460 mg/L,去除率達到95%以上。由于在多數廢水中鎂鹽的含量相對于磷酸鹽和氨氮會較低,盡管生成的磷酸銨鎂可以做為農肥而抵消一部分成本,投加鎂鹽的費用仍成為限制這種方法推行的主要因素。海水取之不盡,并且其中含有大量的鎂鹽。以海水做為鎂離子源試驗研究了磷酸銨鎂結晶過程。鹽鹵是制鹽副產品,主要含MgCl2和其他無機化合物。Mg2+約為32 g/L為海水的27倍。Lee等[10]用MgCl2、海水、鹽鹵分別做為Mg2+源以磷酸銨鎂結晶法處理養豬場廢水,結果表明,pH是最重要的控制參數,當終點pH≈9.6時,反應在10 min內即可結束。由于廢水中的N/P不平衡,與其他兩種Mg2+源相比,鹽鹵的除磷效果相同而脫氮效果略差。
采用化學沉淀法的關鍵因素在于:
1)絮凝劑的用量;2)沉淀產物的去向。
一般情況下,采用磷酸銨鎂沉淀法處理氨氮廢水的氨氮濃度不大于1 500 mg/L?;瘜W沉淀法的應用瓶頸同樣是運行成本較高,無法進行工程應用。
催化濕式氧化法
催化濕式氧化法是8O年代國際上發展起來的一種治理廢水的新技術。 在一定溫度、壓力下,在催化劑作用下,經空氣氧化,可使污水中的有機物和氨分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。具有凈化效率高(據報道,廢水經過凈化后可達到飲用水標準)、流程簡單、占地面積少等特點。經多年應用與實踐,這一廢水處理方法的建設及運行費用僅為常規方法6O%左右,因而在技術上和經濟上均具有較強的競爭力。杜鴻章等對催化濕式氧化法作了一系列的研究,在270 ℃、9 MPa工藝條件下,研制的催化劑可使焦化污水氨氮的去除率達到99.6%,經處理后的污水水質優于國家環保排放標準的要求。濕式氧化法不足在于催化劑的流失和設備的腐蝕。
化學氧化法
利用強氧化劑將氨氮直接氧化成氮氣進行脫除的一種方法。折點加氯是利用在水中的氨與氯反應生成氨氣脫氨,這種方法還可以起到殺菌作用,但是產生的余氯會對魚類有影響,故必須附設除余氯設施。在溴化物存在的情況下,臭氧與氨氮會發生如下類似折點加氯的反應:
Br-+O3+H+→HBrO+O2,
NH3+HBrO→NH2Br+H2O,
NH2Br+HBrO→NHBr2+H2O,
NH2Br+NHBr2→N2+3Br-+3H+。
用一個有效容積32 L的連續曝氣柱對合成廢水(氨氮600 mg/L)進行試驗研究,探討Br/N、pH以及初始氨氮濃度對反應的影響,以確定去除最多的氨氮并形成最少的NO3-的最佳反應條件。發現NFR(出水NO3--N與進水氨氮之比)在對數坐標中與Br-/N成線性相關關系,在Br-/N>0.4,氨氮負荷為3.6~4.0 kg/(m3d)時,氨氮負荷降低則NFR降低。出水pH=6.0時,NFR和BrO--Br(有毒副產物)最少。BrO--Br可由Na2SO3定量分解,Na2SO3投加量可由ORP控制。
生化法
微生物去除氨氮過程需經過硝化和反硝化兩個階段過程。 傳統觀點認為:硝化過程為好氧過程,在此過程中,氨態氮在微生物的作用下轉化為硝基氮和亞硝基氮;而反硝化過程為厭氧過程,在此過程中,硝基氮和亞硝基氮轉化為氮氣。 因此,一般的生物脫氮過程為厭氧/好氧過程、或厭氧/缺氧/好氧過程。
近年來的研究表明,反硝化過程可以在有氧的條件下進行,即好氧反硝化過程。它為突破傳統生物脫氮技術限制,利用一個生物反應器在一種條件下完成脫氮反應提供了依據。SBR生物脫氮工藝的優點在于以時間序列代替空間序列,使好氧硝化過程和反硝化過程在同一容器中完成。采用SBR技術處理高氨氮廢水,在曝氣段實現高氨氮廢水的好氧硝化/反硝化處理。通過實驗研究,她們提出的反應序列為:一段缺氧一好氧曝氣一二段缺氧的SBR反應器,好氧段反硝化脫氮率要占總脫氮率的70%以上。研究表明:好氧反硝化菌為異養菌,脫氮反應歷程與缺氧反硝化菌相同,并且最終產物主要為N2。
目前生物脫氮的濃度一般在400 mg/L以下,采用生物脫氮技術處理高濃度氨氮廢水就需要進行大倍數稀釋,這就使得生物處理設施的體積龐大,能耗會相應提高。 因此,在處理高氨氮廢水時,采用生物處理前,一般要首先進行物化處理。
物化方法在處理高濃度氨氮廢水時不會因為氨氮濃度過高而受到限制,但是不能將氨氮濃度降到足夠低(如100 mg/L以下)。而生物脫氮會因為高濃度游離氨或者亞硝酸鹽氮而受到抑制。實際應用中采用生化聯合的方法,在生物處理前先對含高濃度氨氮的廢水進行物化處理。目前,較先進的生化脫氨主要有以下幾類方法。
膜生物反應器技術
膜生物反應器(MBR)是一種由膜過濾取代傳統生化處理技術中二次沉淀池和沙濾池的水處理技術。MBR將分離工程中的膜技術應用于廢水處理系統,提高了泥水分離效率,并且由于曝氣池中活性污泥濃度的增大和污泥中特效菌(特別是優勢菌群)的出現,提高了生化反應速率。同時,通過降低F/M比減少剩余污泥產生量(甚至為零),從而基本解決了傳統活性污泥法存在的突出問題。
硝化菌為自養菌,生長繁殖的世代周期長,常規的生物脫氮工藝中,為保持構筑物中有足夠數量的硝化菌以完成生物硝化作用,在維持較長污泥齡的同時也相應增大了構筑物的容積。此外,絮凝性較差的硝化菌常會被二沉池的出水帶出,硝化菌數量的減少影響硝化作用,進而降低了系統的脫氮效率。膜生物反應器能夠完全截留微生物,可以有效防止硝化菌的流失,是一種比較理想的硝化反應器。
在適宜的pH、DO條件下,容積負荷控制在2 kg/(m3d)以下時,采用一體化膜生物反應器可以將濃度為2×103mg/L的氨氮轉化為硝酸鹽。
雖然采用膜生物反應器處理氨氮廢水會解決傳統活性污泥法存在的一些問題,但膜污染問題尚未見有較好的解決辦法
短程硝化反硝化
生物硝化反硝化是應用最廣泛的脫氮方式。由于氨氮氧化過程中需要大量的氧氣,曝氣費用成為這種脫氮方式的主要開支。短程硝化反硝化(將氨氮氧化至亞硝酸鹽氮即進行反硝化),不僅可以節省氨氧化需氧量而且可以節省反硝化所需炭源。用合成廢水試驗確定實現亞硝酸鹽積累的最佳條件。要想實現亞硝酸鹽積累,pH不是一個關鍵的控制參數,因為pH在6.45~8.95時,全部硝化生成硝酸鹽,在pH<6.45或pH>8.95時發生硝化受抑,氨氮積累。當DO=0.7 mg/L時,可以實現65%的氨氮以亞硝酸鹽的形式積累并且氨氮轉化率在98%以上。DO<0.5 mg/L時發生氨氮積累,DO>1.7 mg/L時全部硝化生成硝酸鹽。對低碳氮比的高濃度氨氮廢水采用亞硝玻型和硝酸型脫氮的效果進行對比分析。試驗結果表明,亞硝酸型脫氮可明顯提高總氮去除效率,氨氮和硝態氮負荷可提高近1倍。此外,pH和氨氮濃度等因素對脫氮類型具有重要影響。
短程硝化反硝化處理焦化廢水的中試結果表明,進水COD、氨氮、TN 和酚的濃度分別為1201.6、510.4、540.1、110.4 mg/L時,出水COD、氨氮、TN和酚的平均濃度分別為197.1、14.2、181.5、0.4 mg/L,相應的去除率分別為83.6%、97.2%、66.4%、99.6%。與常規生物脫氮工藝相比,該工藝氨氮負荷高,在較低的C/N值條件下可使TN去除率提高。
厭氧氨氧化(ANAMMOX)和全程自養脫氮(CANON)
厭氧氨氧化是指在厭氧條件下氨氮以亞硝酸鹽為電子受體直接被氧化成氮氣的過程。ANAMMOX的生化反應式為:
NH4++NO2-→N2↑+2H2O
ANAMMOX菌是專性厭氧自養菌,因而非常適合處理含NO2-、低C/N的氨氮廢水。與傳統工藝相比,基于厭氧氨氧化的脫氮方式工藝流程簡單,不需要外加有機炭源,防止二次污染,又很好的應用前景。厭氧氨氧化的應用主要有兩種:CANON工藝和與中溫亞硝化(SHARON)結合,構成SHARON-ANAMMOX聯合工藝。
CANON工藝是在限氧的條件下,利用完全自養性微生物將氨氮和亞硝酸鹽同時去除的一種方法,從反應形式上看,它是SHARON和ANAMMOX工藝的結合,在同一個反應器中進行。固體廢棄物填埋場滲濾液處理,溶解氧控制在1 mg/L左右,進水氨氮<800 mg/L,氨氮負荷<0.46 kgNH4+/(m3d)的條件下,可以利用SBR反應器實現CANON工藝,氨氮的去除率>95%,總氮的去除率>90%。
ANAMMOX和CANON過程都可以在氣提式反應器中運轉良好,并且達到很高的氮轉化速率??刂迫芙庋踉?.5mg/L左右,在氣提式反應器中,ANAMMOX過程的脫氮速率達到8.9 kgN/(m3d),而CANON過程可以達到1.5 kgN/(m3d)。
好氧反硝化
傳統脫氮理論認為,反硝化菌為兼性厭氧菌,其呼吸鏈在有氧條件下以氧氣為終末電子受體在缺氧條件下以硝酸根為終末電子受體。所以若進行反硝化反應,必須在缺氧環境下。近年來,好氧反硝化現象不斷被發現和報道,逐漸受到人們的關注。一些好氧反硝化菌已經被分離出來,有些可以同時進行好氧反硝化和異養硝化(如Robertson等分離、篩選出的Tpantotropha.LMD82.5)。這樣就可以在同一個反應器中實現真正意義上的同步硝化反硝化,簡化了工藝流程,節省了能量。
用序批式反應器處理氨氮廢水,試驗結果驗證了好氧反硝化的存在,好氧反硝化脫氮能力隨混合液溶解氧濃度的提高而降低,當溶解氧濃度為0.5 mg/L時,總氮去除率可達到66.0%。
連續動態試驗研究表明,對于高濃度氨氮滲濾液,普通活性污泥達的好氧反硝化工藝的總氮去除串可達10%以上。硝化反應速率隨著溶解氧濃度的降低而下降;反硝化反應速率隨著溶解氧濃度的降低而上升。硝化及反硝化的動力學分析表明,在溶解氧為0.14 mg/L左右時會出現硝化速率和反硝化速率相等的同步硝化反硝化現象。其速率為4.7mg/(Lh),硝化反應KN=0.37 mg/L;反硝化反應KD=0.48 mg/L。
在反硝化過程中會產生N2O是一種溫室氣體,產生新的污染,其相關機制研究還不夠深入,許多工藝仍在實驗室階段,需要進一步研究才能有效地應用于實際工程中。另外,還有諸如全程自養脫氮工藝、同步硝化反硝化等工藝仍處在試驗研究階段,都有很好的應用前景。

 


環保設備 備案號: 滇ICP備2021006107號-303 版權所有:蓁成科技(云南)有限公司     網站地圖
    本網站文章僅供交流學習,不作為商用,版權歸屬原作者,部分文章推送時未能及時與原作者取得聯系,若來源標注錯誤或侵犯到您的權益煩請告知,我們將立即刪除。

午夜DJ视频在线观看免费